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Comer transfer matrices and corner magnetization for the 
king model 
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Fachbereich Physik, Freie Universitit Berlin, D-1000 Berlin 33, Federal Republic of 
Germany 

Received 27 November 1990 

Abstract. We consider the corner magnetization of an king  square lattice with frec edges 
along a diagonal direction. Using some remarkable properties of the corner transfer matrix, 
we give a unified treatment for various opening angles. The calculation o f  the magnetization 
is reduced to the solution of a matrix equation. In the thermodynamic limit we construct 
an explicit form of this equation and discuss its numerical and asymptotic solution and 
the results obtained thereby. 

1. Introduction 

The investigation of local order at corners of two-dimensional systems started only 
some years ago. It was first done for the Ising model [l] and gave an interesting result: 

geometrical angle (for isotropic systems) or an effective angle (for anisotropic systems) 
at the corner. Conformal arguments then showed that this is a general feature in two 
dimensions [l-31. So far there exist results for several types of Ising model corners 
[1,4,5]. However, with the exception of the 180" corner [5,6] (i.e. a straight surface), 
no completely analytical solution exists: the other results were obtained by using at 
least partly numerical methods. A magnetization formula for one particular 90" corner 
exists only as a conjecture [5]. This suggests that one should look for some new 
approach. 

The method which we present in this paper is based on the corner transfer matrix 
(CTM) introduced by Baxter [7-91. This quantity appears if one forms a two-dimensional 
system from a number of wedge-shaped segments. The CTM is the partition function 
of such a segment with the spins along the edges as variables. Fixing the spins along 
the outer boundary leads to a non-zero expectation value of the central spin. In this 
way bulk order parameters have been calculated especially for the more complicated 
solvable models [8, 10, 111. In these calculations, the intriguingly simple eigenvalue 
spectrum of the CTM plays a crucial role. This spectrum has also been studied recently 
in connection with conformal invariance [12,13]. 

Given its name, it may seem odd that the CTM so far has not been used for actual 
corner problems. However, there is a difficulty in this case, because the thermodynamic 
average implies an independent summation over all variables along the edges. Thus 
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one first has to find a convenient way to handle this problem. The method we give is 
the following: first couple the two edges by a seam of additional bonds, thereby creating 
a conical system. Then the corner magnetization m, can be calculated from the usual 
simple trace formula [9] which, however, now contains the eigenvalues of the transfer 
matrix formed from the CTM and the seam operator. The original corner problem then 
is recovered as the (non-trivial) limit of zero bond strength in the seam. We show that 
in this limit only one eigenvalue contributes to m,. 

In principle, the calculation of this single eigenvalue involves the complete 
diagonalization of a more complicated object than the original CTM, followed by an 
equally difficult infinite limit. Due to a number of remarkable properties of the cn-a 
series of ‘mathematical flukes’ [14]-it turns out that one has only to find a certain 
N-dimensional vector, N being the linear size of the wedge. The matrix involved 
contains the fermion single-particle energies and eigenfunctions of the CTM. Whilst 
this paper treats the king model using fermion techniques, it should be remembered 
that the six- and eight-vertex models also have free-fermion C T M ~ .  Moreover the power 
of the CTM in general stems from their quasiparticle spectra. So we appear to have 
another example of the privileged role played by corners and corner transfer matrices, 
which is known to lead to the occurrence of Virasoro characters in the spectra of CTMS 

of lattice models off criticality [15-181. Certainly we have a very convenient and natural 
formulation for a corner magnetization problem. Especially, the effective opening angle 
BeR enters in a very simple way because of the property of CTMS that they are generated 
by exponentiation of a Hamiltonian boost operator [9] in the thermodynamic limit. 

The paper is organized as follows. Section 2 reviews some gzneral properties of 
the CTM and its diagonalization in terms of fermions. In section 3, the seam operator 
is introduced and the limit of zero bond strength is obtained. In section 4 the equations 
are further analysed and brought to a usable form. Section 5 contains the construction 
of the eigenvectors in the thermodynamic limit, leading to an explicitly stated set of 
equations wbicb determine m,. Section 6 gives numerical results and also discusses 
some asymptotics. Section 7 contains a summary and outlook. 
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2. General properties of the corner transfer matrices 

The basic CTM-denoted herein either as A(u, k )  or more simply as A-is shown in 
figure 1 for a small lattice size. Since we will be concerned with magnetization problems 
we have added an extra line of spins at the edge, to fix the boundary conditions. The 
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Figure 1. The corner geometry used in this paper. The wedge-shaped portion of the square 
lattice gives the corner transfer matrix A. To the left and right are half-seams of  bonds 
connected by the dotted lines. The whole system gives the transfer matrix T ofequation (3.2). 
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effect of this is that there are two simple operators which commute with the CTM: they 
are U; and U> in the representation which we choose. The most important properties 
of the CTMS which we need depend only on the fermion algebra. Proofs of some of 
these were already given in [13], a paper to which shall refer as DP; here we only 
supplement those proofs as necessary. 

The appropriate (elliptic) parametrization of the Boltzmann weights, using energies 
J, (normalized by the factor k7‘) is given in [19], viz 

sinh 25, = -i sn(iu) sinh 25, = i ns(iu)/k k =  (sinh25, sinh2J2)-’. (2.1) 

The elliptic parameter U is a measure of the anisotropy of the system, k the elliptic 
modulus appropriate for the low temperature regime. We use the standard notation 
[20] for the modulus lc, the complementary modulus k‘ and the quarter periods K and 
K’ of the elliptic functions. The interaction between two neighbouring spins defines 
an operator which may he represented in terms of Pauli matrices U: and U; which 
act on the spins in the mth line. We choose the representation in which U; is diagonal: 
then the operator for an interaction of strength J, between two spins on the mth line 
is X 2 , , _ , = p ,  exp(Jfu;), where pI is an unimportant normalization factor and JT is 
the dual of J,. Similarly, the operator for an interaction of strength J2 between two 
spins on the mth and (m + 1)th lines is X,, = exp(J,u”,k+,). Clearly the CTM is the 
product of such operators, one for each interaction: typical formulae are given in DP. 

Fermion operators are introduced in the standard way via the Jordan-Wigner 
transformation: 

m 

c,,,=P,,-,(u:-iuY,) ck=P,,-,(u”,iuY,) pm= n (- U:). (2.2) 
n -0 

Now it is shown in DP that, because A is a product of operators X .  which are spinor 
representations of rotations, it is possible in general to find a linear transformation of 
the c,, ck which transforms the CTM to a product of commuting operators of the same 
type: 

Y .. 
A = p  n exp[-y,(mfn,-$)] y ,>o  (2.3) 

;=O 

where p is a normalization factor, and the transformation takes the form 

(,4),= .( f) .  
The matrix 9, of dimension 2(N+1),  together with the eigenvalues y,, are found by 
diagonalizing the matrix d defined by Heisenberg equations of motion (representation 
of the Clifford algebra) of the form 

A( f )  A-‘ = d( f) . 
In the present case, d is a real symmetric matrix, so there is a real orthogonal matrix 
9’such that 

(2.6) 

where diag stands for a diagonal matrix with the given entries. It is also shown in DP 
that the eigenvalues of d occur as real reciprocal pairs, whilst the eigenvectors are 

Y’dY=diag(e’o,. . . ,e’N,e-’o,. . . , e-’.) 
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paired under interchange of the creation and annihilation operators. Thus S has a 
bipartite structure which we shall display by writing it in the block form 

B Davies and I Peschel 

.=(" H G  H )  (2.7) 

9' is formed by writing the components of the eigenvectors as its rows, because of the 
way it is defined in (2.6), and we write the rows in order of ascending magnitude of 
1;. There is some choice left for the zero eigenvalue which is doubly degenerate, We 
fix this by taking the first row of G as (f, 0,.  . . , 0, f) and the first row of H as 
(f, 0,. . . , 0, -+). Since 9 is orthogonal, the matrices G and H satisfy the relations 

G ' G + H ' H = I  G'H t H'G = 0. (2.8) 
There is a further relation involving the columns of G and H which we will need. It 
comes from considering the identity 9Y= I in the positions where the zero eigenvectors 
are involved in the inner products. With the choices made above, we find that the first 
and last columns satisfy 

G,,= +H,o j = O  G,, = -H ,O j # O  
(2.9) 

Now define a further matrix E = diag(e'0,. . . ,e'.), then equations (2.6)-(2.8) are 

G,, = -H,N j = 0 G,, = +H,N j # 0. 

equivalent to the block structure 

(2.10) ) G'EG+H'E- 'H C ' E H + H ' E - ' G  
H'EG + G'E-'H H'EH + G'E-lG ' 

d=( 

A most useful factorization may now be made. First define two further matrices C and 
D by 

c = ( E ' I ~ G + E - ' I * H )  D = ( E - 1 / 2 G + E 1 ' 2 H ) .  (2.11) 

Then equation (2.10) takes the form 

&=( C'C + C ' D F I )  
* D'C F I D'D 

(2.12) 

This factorization will be central to our calculation of the magnetization in section 4. 

3. Boundary conditions for a corner 

The aim is to construct a transfer matrix whose trace contains the desired information 
about the corner magnetization with open boundary conditions. In the uses of CTMS 

in the existing literature, the system is in the form of a cone-the edges which form 
the corner are glued together. Consider now the seam operator for a line of bonds of 
strength Jo 

u = J $ .  (3.1) 
N - l  

In the representation which we are using, this mixes together states with corresponding 
spin values, and those with opposing spins, with relative Boltzmann weights cosh Y 
and sinh v, respectively. An open boundary is the case that v+m, a cone is the limit 
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U-0. Thus we want to diagonalize the product of two non-commuting operators, the 
CTM and the seam operator, and then take the limit v + m. As usual for transfer matrices 
of product form, it is more convenient to consider the symmetrized product 

(3.2) 
This is the form shown in figure 1 ,  with bonds fJo on each side. 

Now the seam operator (3.1), like the CTM itself, is a product of spinor representa- 
tions of rotations, so the general principles for the diagonalization, and the properties 
of the matrices involved, are the same for T as for A. The effect of the seam operator 
on the fermion operators is 

j"= W1/2AW1/2 

(3.3) 

where 

W=diag(l,e-'",. . . ,e-'", 1, l,e2", . . . ,ez", 1). (3.4) 
Hence, the seam changes the problem of diagonalizing the matrix & to that of 
diagonalizing T = W'/2&W'/z. 

Our goal in this section is to take the limit v+m. In this limit, we expect that the 
seam operator will dominate the behaviour of the excitation spectrum. In fact the 
excitation spectrum of W is simply that there are two zero-energy modes whilst all 
the other modes have energy 2v. Therefore we expect that for T the excitation spectrum 
has one zero-energy mode, one mode whose energy remains finite as v + CO, whilst all 
other modes have excitation energies which are of order 2v. In fact, we have observed 
this behaviour in numerical calculations for small size systems. To extract the limit 
analytically, we (temporarily) write the matrix & with the rows and columns in a 

entries 1 in W, then we write those rows and columns which correspond to the entries 
exp(-2u), and finally those corresponding to the entries exp(2u). With this convention, 
the matrix T which we need to diagonalize is related to d by the following block 
structure 

A:+Ta.e-+ -.A-- XXTa ..A+- first thn f-..r ..-.z,r o r A  nnl..-es ..rhirh r-rrer-n-rl +- thn 
" L l l r l r l l l  " L " b I .  ..r W,,,L L l l D I  L1.C ,"U1 L V W O  llll" l " l U l l l l l D  W l . l U L 1  C"LLC"Y"'." L" L l l b  

(3.5) 

Write the eigenvectors using the same block structure, then the eigenvalue equation is 

do0 

e-"&,-' '2') (;;) (;;) (3.6) 
e-"&_, e-"&__ U- =ey U _  , 

&+- e'"&++ 

We want solutions for which y remains finite as v+m. The top block of (3.6) reads 

&o,,uo+ e-"d,_u_+ e"do+u+ = emuO (3.7) 

with go. Conseq??ent!y, on!y "+ ro"!r;.boter to (317): the b!o& which determines it re& 
whilst the other two blocks show that U- and U+ are both of order exp(-U) compared 

eY&,,uo+&+~u~+e2"d+,u+ =e%+. (3.8) 
To leading order in exp(-u) the solution of (3.8) is 

U+ = -e~'&,,+&sP;~&+ou, (3.9) 
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and when this is substituted into (3.7) we obtain an eigenvalue equation for a 4 x 4 
matrix a: viz 

%U,= (do,- do+.di:d+,,)u0= eouo. (3.10) 
This is the main result of this section: together with the factorization (2.6) it gives, at 
least in principle, a method to calculate the only excitation energy which remains finite 
when the boundaries are open. 

The formula for the corner magnetization may now be given in terms of the matrix 
a. In general, the magnetization formulae which are given by C T M ~  are infinite products 
of the form 

B Dauies and I Peschel 

m n tanhim, 
j=l 

(3.11) 

involving the single fermion excitation energies wj. In the present case, however, only 
one excitation makes any contribution to such a formula. Furthermore, we know from 
general principles that the eigenvalues of 8 are 1, 1, eo, e?', so we have trace 
% = 2( 1 +cosh 0). Then the formula m, = tanh fw for the magnetization can be written 
as 

m ; = 1 - -  4 
trace 

(3.12) 

4. Construction of the matrix 

The central problem for the construction of 91 is the inversion of d,,, followed by 
its use in equation (3.10). In this section we shall find a number of properties of % 
which will reduce its construction to the computation of a single entry in the solution 
of a set of linear equations. The starting point is the factorization (2.12). There is a 
choice of sign in this factorization but the result will not depend on that choice. 
However, some of the intermediate details do  have such a dependence, so in this 
section we set C=E'"G-E-'12H and D =  E-"*G-E'12H. We also define an 
( N  + 1) x ( N  - 1) matrix B as the following restriction of D, 

B. P =D. P O s j c N ,  O < m < N  (4.1) 
for then we get the factorization 

d++ = B'B. (4.2) 
We also need those columns of d which form d,,. In the notation of equation (2.12) 
theyare(1-D'C),,, (I-D'C),,, (D'D),,and (D'D),, withtherestrictionO<j<N. 
Hence the term involving I does not contribute and may be dropped and we see that 
all the columns are given by the action of E' on various vectors. Moreover, when we 
use the property (2.9) we find that the vectors involved satisfy C, ,  = D,,, j > 0 and 
C,,  = -D,,, j > 0. Consequently, the construction of 2I depends solely on entries from 
the lower right quarter D'D of Sp. 

To simplify the use of this information, define three ( N +  1)-dimensional vectors 
e, U, U as 

e =  (1.0,. . . ,O) 

uJ=O j=O u,=D,, j>O (4.3) 
U , = o  J = o  U, = DJN j>O 
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The entries of do, may be written down immediately in terms of these vectors: viz 

u.u -u.u 1 - u.u -u.u 

U. 0 

u,u 1 + u.u i -u.u 1 + a u  u.u 
1-u.u u.0 U. U 

.sp,= ( 
-u.u n u  

(4.4) 

Similarly, the entries of 12Po+d;:d+o may be written in terms of inner products of 
the form uB(B'B)-'B'u. Consider such a product, and set 

( B ' B ) - ' B ' ~  = X. (4.5) 
This is equivalent to the equations B'Bx = B'u whose solution takes the form Bx = U + a n  
where n is a null vector of B .  Given such a null vector, a is determined by the fact 
that the solution B x =  u + a n  is itself an overdetermined set of equations, so it is 
necessary that the right-hand side belong to the column space of B. Now B' has two 
less rows than columns, and hence two independent null vectors. Moreover, one of 
these is e and this certainly does not belong to the column space of B, which has a 
zero top row. Denote the non-trivial normalized null vector by n, then we find 

B x = u - ( u . n ) n  (4.6) 
from which it follows that 

UB(B'B)-'B'U=U.U-(U.~)~ (4.7) 
The result of this argument is that the matrix elements we need will have two contribu- 
tions: inner products of the form U '  U which will cancel the corresponding terms in 
(4.4), and the two inner products 

a = u ' n  p = v . n .  (4.8) 
Collecting all this information, we find for 91 the structure 

a' l-3 'it "i 
1-a* ap a2 ap 
-ap p2 aj? 

(4.9) 

We must determine the inner products a and p. Forthis purpose, consider the matrix 
E-ll2G 

x = ( 
Its inverse X-' has the block structure 

whilst the transpose satisfies 
x,x=( D'D DS)J 

(4.10) 

(4.11) 

(4.12) 

It follows that (X'X)-' = X-'(X-')' is block diagonal: expressed in terms of (e, I?) 
we obtain 

Efi'+fiC'= 0 C;.Cn+€?r?= ( D , D ) - I .  (4.13) 
The first relation is orthogonality between rows from different blocks 
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Equation (4.1 1) may be written in terms of e and fi as two independent equations: 

( 6 1 f i ) ( E - " 2 G ~ E " 2 H )  = I. (4.14) 

Consequently, the rows 0 and N of (e-& contain the null vector we need, in a 
combination to be determined. In fact, formulation of the problem using X gives null 
vectors for both possible definitions of D in (2.111. In either case; one null vector is 
e and we want to find the other. Now define two vectors w and w' by writing the 
relevant rows (in an obvious notation) as 

(4.15) 

Orthogonality of rows from different blocks of X gives the important results 

Iwl=l  l l U ' l =  1 w -  e = w'. e. (4.16) 

We shall use these to obtain the formula (4.20) below expressing the magnetization 
m, as the component w, of w. However, the fact that wo= w; means that the formula 
LO YL'.',.",~.'Y I. L.L. YI...'. a x e x 5  L D  . ' > .YOI I I  ..I L L L C  L U ~ L V L 1 L Y L U L L  Y L  U) L ' J U L L 1 L . g  111 an 
interchange of the roles of w and w'. Therefore we do not refer to  w' again. 

Now we can evaluate the inner products a, 6, as follows. From (4.14) we know 
that four inner products between various vectors have a value of either 0 or 1. Only 
two o f  these are needed, namely 

. .nrh*nnc.A iF +he *+ha- -inn ir rh-nn- i- +hn fn-+-i-.ot+.n nf nl r e m . . l + : n l  :- 

w . g = !  w .  (.+.I = Q .  (4.17) 

The null vector n must be orthogonal to e, so it has the form n = A (  w - woe), where h 
is a normalization factor. Using this in the definitions (4.8), together with (4.17), we find 

f f = A  p = -hw,. (4.18) 

From (4.16) we know that w is normalized, so we find that 

A'= I / (  1 - W i )  n2-/32=1. (4.19) 

The foregoing argument i s  quite long, but the conclusion i s  quite simple. The matrix 
% has the structure (4.9). and the necessary inner products, which are related, are 
given by (4.18). The result becomes even more simple when we use it in (3.12) to 
.L..:.. . L A  _..__.. :--&:-~. A<... . .'-.:-L'c _I --,...t-,:-- =..A .L^I 
UDLdln 1nC "1iig:rlGU'dLiUll. HLICr ii SLIalgrlllUl W a l U  lialCUlaUULI W C  LlnU 1lldL 

m, = Iwd. (4.20) 

The equations which determine w are more easily analysed by following Lieb el a/ 
[21] and introducing new matrices Q, and q as 

.,* .r - - " 0 - I ._  ~ U 

If we use the notation that the entries of 
for *yj-are written as qlj(m) and Gj(m), then the equation for w is 

(4.21) m -  C L .  U 
Y - "  r r .  

and 'If in the j t h  row-the eigenvectors 

N 

, j=o 
Z w,[cosh($y,) $J,( m ) - 4, (m 11 = &,o. (4.22) 

This is a central equation of this paper: its solution gives the corner magnetization 
directly through (4.20). There is an important variation for the solution of (4.22) which 
follows from the special structure of the zero eigenvectors. The top row of the coefficient 
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matrix has the entries (0,. . . ,0, I ) ,  hence we may first solve the equations indexed by 
0 =s m < N, for the components of wj indexed by 1 s j s N, independently of the value 
of w,. Then w, may be found either by back substitution, or we may simply use the 
fact that w is normalized to find Iwol. The second method is more convenient for taking 
the thermodynamic limit; the former for calculations with systems of finite size. 

5. Thermodynamic limit 

Implementation of the method requires that we construct the matrices CP and V for 
use in (4.22). For numerical calculation on small systems this can be done by construct- 
ing and diagonalizing the matrix .d directly from its definition in terms of spinor 
rotations. Since our chief interest is in the thermodynamic limit, we prefer an explicit 
construction: for this we use the property that the CTM is generated exactly by 
exponentiation of a Hamiltonian boost operator in the limit of large N [9,13]. This 
is why we introduced the elliptic parametrization in ( 2 . 1 ) :  in these variables we have 
A(u,  k ) =  a exp[-uH(k)], where a is an unimportant normalization factor and 

N-l N-l H = - k  m ( 2 c L c , - l ) -  (m+f)(c~-c,)(c,+,+c,+,). t (5.1) 
m = l  m =U 

Diagonalization is a standard problem in fermion algebra [19 ,22 ] :  we therefore give 
only sufficient detail for the present purpose. The analogue of (2.5) for the Hamiltonian 
is 

and then the matrix 9' of eigenvectors, and the eigenvalues A, > 0, are given by 

9'XY=diag(-A, ,,..., - A N , & , . .  . , A N ) .  ( 5 . 3 )  

Of course, 9 has the block structure (2.7), although the defining equations are more 
easily written down using the matrices CP and 'P introduced in (4.21) rather than G 
and H. We get the matrix equations 

CPF = -A'# V F ' =  -A@ (5.4) 

where A = diag(h,, . . . , A,.,) and F is a sparse matrix whose non-zero entries are 

F,,,=2km O < m < N  F,,,m-l = (2m - 1) O <  m =s N. (5 .5)  

Subsequent to solving the Hamiltonian problem, the eigenvalues y,(u, k) of the CTM 
are given by the exponential relation 

%(U. k ) =  uA,(k). (5 .6)  

This simplification is quite dramatic even for numerical purposes: here we employ it  
to obtain an analytic solution for the eigenvectors. 

Define generating functions of the eigenvectors, @,(t) and 'u,(t), by 

(5.7) 
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The technical details which lead to formulae for Q j ( t )  and 'u , ( t )  are very similar to 
those given in [19], and will he omitted. After introducing the new variable U via 
t = - k s n 2  v, we find for j z l  

Qj(u)=kpjsd us in[ ( j - f )m/K]  

B Dauies and I Peschel 

'uj( U )  = pj nc v cos[( j - +)TU/ K] 

q = exp(-?rK'/ K 1 ( 5 . 8 )  

while the corresponding eigenvalues attain the limiting values 

A,( k) = (j-f)?i/K. (5.9) 

The generating functions are even periodic functions of the variable v so it is natural 
to use a Fourier cosine decomposition to define a new coordinate basis. Effectively 
we go to a momentum space representation in this way, a point of view which is 
discussed by Thacker and Itoyama [17] in connection with the Visaroro algebra of 
non-critical CTMS. Explicitly, we define a new set of coefficients $ , ( I )  and $ , ( I )  by the 
expansions 

m m 

Q j ( u ) =  1 d j ( l )  cos(/~ru/K) ' u ; ( u ) =  1 ~j(/)cos(/ .rrv/K).  (5.10) 
I = O  I-" 

The coefficients may be obtained in explicit form from standard series expansions of 
Jacobian elliptic functions sd and nc [20], together with trigonometric addition for- 
mulae. We get 

1 x [cos K 
( n + j ) m  ( n - j + l ) m  

+cos (5.11) 

m ( - l ) " q " + l / 2  ( n  + j ) m  ( n  - j + l ) m  "Pj 

k'K n = O  1+q2"+' K -cos 
['Os K Y j ( u ) = -  1 

where the prime on the summation means that the n = 0 term is given weight one-half. 
From (5.11) the Fourier coefficients in (5.10) may be read off. 

Now multiply equations (4.22) for the null vector by f m  and sum over m 2 0. The 
left-hand side simply changes through the replacement of the coefficients $ j ( m )  and 
$ j ( m )  by the corresponding generating functions. The right-hand side transforms to 
.Z~=o&,,otm = 1. If we expand the resulting functiolal equation in cosine functions, 
the left-hand side involves the coefficients $ j ( I )  and $hj(l) whilst the Fourier coefficient 
for the right-hand side is 61,0. Therefore we may write down the equations which 
determine the components wj of the null vector, for 1 s j < 00, in a new form appropriate 
to the thermodynamic limit, viz 

m 

1 ~~{cosh[( j - f )rru/K]~~( l ) - s inh[( j - f )rru/K]~, ( / ) )=S, , , .  (5.12) 
j = l  

These equations, which are now explicitly stated in terms of the natural variables U 
and k of the problem, give the magnetization through the fact that w is normalized: 

- 2  w:= I - x j = , w j .  
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6. Numerical and asymptotic results 

We have not found a general analytical solution of equation (4.22) or (5.12) hut they 
can be solved numerically. It is important to notice the difference between the two. 
The form (4.22) is for a finite system and the index m is a position coordinate. If the 
eigenvalues and eigenvectors are found by direct diagonalization of the matrix d, the 
result is exactly the magnetization for this finite system. On the other hand, the form 
(5.12) is for an infinite system, and the index I is a momentum coordinate: truncating 
the infinite system at L is a momentum space cut-off. For either choice, the value of 
N (respectively L )  has to be increased until the desired accuracy is attained: this size 
also depends on the values of the variables U and k Equation (5.12) is particularly 
convenient for two reasons: first, the necessary matrices may he constructed directly 
from the explicit formulae of section 5; second, the solution forthe null vector converges 
rapidly with increasing L, even near the critical point. For example, it is not necessary 
to go beyond L;= 100 even when k'= lo-'. The only numerical problem which is 
encountered is that in, is calculated as the difference between 1 and Z,",w:: whilst 
the components of the vector and the sum both converge rapidly with increasing L, 
there is the usual loss of accuracy when the difference is taken. Even so, computation 
of m, to (say) five-figure accuracy is a simple problem over a very wide range of 
parameter values. 

Results are given in figure 2, where the corner magnetization of an isotropic system 
with opening angles 0 = 90", 180", 279", 360" is plotted against the temperature, measured 
by k These four cases correspond exactly to the values U = K'/2, K', 3K'/2, 2K'  
respectively. The curve for 0 = 90" agrees with the result of [4] which is a useful check 
on our calculation. Also the curve for 0 = 180" coincides with the analytical formula 
m,= ( 1  - k)"2 given in [4]. The two other curves, however, are new. Note that 0 = 360" 
corresponds to a full plane with a cut emanating from the central spin, not to the bulk 
result for a full plane. Consequently m ,  is below the Onsager bulk value, (k')"4. The 
behaviour near T, leads to the well-known corner exponent &=rr/20 [1,2]. One 
could easily treat even larger angles describing a system in the form of a staircase. The 
magnetization curves then assume a more and more rectangular shape, as one would 
expect. Note that for a fixed angle of 90°, variation of U in the range 0 < U < K' 

0 0.5 k - 1.0 

Figure 2. Corner magnetization against temperature measured by the Onsager parameter 
k for isotropic lattices and lour different opening angles. 
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corresponds to variation of the anisotropy. The result for 180", on the other hand, is 
obtained by multiplying together A(u,  k )  and A ( K ' -  U, k )  so that U cancels and m, 
is independent of the anisotropy. 

Although the variable U was introduced to measure the anisotropy, it may also be 
regarded as an effective angle, through the relation 

e,, = K I .  (6.1) 

At criticality, such an interpretation is quite clear, and has been used in various 
discussions of conformal properties [l, 12,131 of corners. We find that the dependence 
of m, on e,, has the asymptotic form 

m d 0 A  = 4 T )  exp[-b(T)/0,,1 eefi<< 1 (6.2) 

for all temperatures, not just at the critical temperature. In figure 3, we show the 
behaviour of m, as a function of U for small U (because the elliptic quarter period K '  
has a singularity at k = 0, this variable is more convenient than 0J. As can be seen, 
this is of the form of equation (6.2) for all values of k down to k =O.  This is the same 
feature as found for the apex magnetization at the tip of a cone [ I ] .  There one finds 
from (3.11) with oj= %(U, k), where the latter is given by (5.6) and (5 .9 ) ,  that 

m,=2'I2 exp(-.rrK/4u). (6.3) 

In the present case the constant in the exponent differs from (6.3) by a factor a with 
a + 1 for k + 0 and a + 2 for k + 1 .  Near the critical temperature, where K -In( T,- T), 
this formula gives the corner exponent as 8,= 71/20,, reflecting the anisotropy of the 
system [l, 131. 

We may obtain this asymptotic information, at least for low temperature, from the 
fact that equations (4.22) are trivally solved when k = 0. For the eigenvectors and 

B Daoies and I Peschel 

0 0.5 " 4 1.0 

Figure 3. Dependence of the corner magnetization on the anisotropy parameter U, for three 
different temperatures. The linearity of the graphs for small U corresponds to the asymptotic 
forms (6.2) and (6.3). 
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eivenvalues we have 

b , ( m ) =  $ , (m)  = (mod N )  
(6.4) 

from which it followsthar w ,  = l/coshfu, w,,, = [sinh(j-f)u/cosh(j+f)u]w,, 1 s j <  N,  
w,,=[sinh( N -f)u]w,, giving 

A o = O  A,=2j-l  j > O  

N 

m , =  n tanh(j-$)U. (6 .5)  ,=, 
For N + m ,  the infinite product is of a familiar type and a complementary nome 
transformation [ 9 ]  gives the asymptotic form (6.3) (with K = r / 2 )  for small U. 

I. Summary and outlook 

In this paper we have treated the corner magnetization problem in a new way using 
special properties of Baxter's corner transfer matrices. After a number of steps, some 
of which involved unexpected simplifications, we arrived at a system of linear equations, 
in either a coordinate or momentum representation, from which m, is determined in 
a very simple way. In this sense the situation is similar to that encountered in the 
treatment of a 90" corner by the row-to-row transfer matrix [1,4,5]. However, the 
present technique is much more adapted to the corner problem since one can handle 
various opening angles in a unified formulation. 

The equations can be solved numerically for all temperatures. In particular, the 
form (5.12) turns out to be a very efficient way to obtain the thermodynamic limiting 
values of m, using rather small matrices, even very close to the critical temperature. 
It also gives an indication of why the case 8 =  180" is special: it brings about certain 
simplifications in the coefficients of the matrix equation. This is due to the fact that 
in this case the natural variable x=exp(- ru /2K) ,  which incorporates the effective 
angle, is equal to the elliptic nome q. Still, even for 8 = 180" we did not succeed in 
obtaining the null vector analytically, and thereby re-deriving the exact formula for 
m , .  Moreover, the special nature of the equations when 8 = 180" makes it likely that 
there is no simple formula for m, for other values of Oen. This must await further 
investigation. 

One should also be able to extend the techniques of this paper to the other type 
of comer in a square lattice, where the free edges are along the directions of the bonds. 
Although in this case the exponent for 8 = 90" is independent of the anisotropy, there 
is an interesting conjecture for the dependence of m, on the interaction strengths [ 5 ] .  
Similarly, the 60" corners in a triangular lattice could be treated. Finally, the more 
complicated solvable models are natural candidates for analogous investigations. Since 
in these cases even the bulk order parameters can be found only with the help of C T M ~ ,  

one should expect C T M ~  to be needed for an investigation of their order parameters 
at corners, including straight surfaces. 
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